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A model which enables dynamic analysis of flexibly coupled misaligned shafts is

presented. The model is setup to account for both angular and parallel misalignment in

the presence of mass unbalance and incorporates a coupling having angular, torsional

and axial flexibility. Among the important features is the ability to simulate both

motion are derived for the linear system, extended to include nonlinear bearing effects

and subsequently transformed into non-dimensional form for general application. A

series of numerical analyses are performed and the influence of important system

parameters assessed thereby providing insight to the resulting static and dynamic forces

and motions. Angular and parallel misalignments are shown to produce fundamentally

different system response. It is found that the static preload induced by both types of

misalignment can play a key role in producing complex vibration resulting from it’s

interaction with rotating-element anisotropy and bearing nonlinear properties. Bearing

static forces are altered and rotating elements are subjected to alternating forces which

could affect fatigue life. Bearing forces can be further modified by the application of

transmitted torque. The potential for great variability in system response is shown to

exist due to the participation of numerous influential variables.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of misalignment in coupled-shaft systems is a major reliability issue in present-day critical machinery
applications, even though the practical procedures necessary to ensure acceptable alignment are well known [1]. The
ability to clearly diagnose the presence of misalignment using vibration analysis can be vital in reducing costly machine
unscheduled downtime. However, this can be a difficult task due to the complexity of the misalignment-vibration
relationship. For instance, many publications cite the presence of a twice running speed vibration component as strong
evidence of misalignment, yet field observations frequently contradict this. Indeed some studies not only reinforce the view
that second-harmonic vibration need not be present but conclude that there is no unique misalignment-related vibration
characteristic [2]. The evidence so far indicates that the form of the vibration resulting from misalignment is greatly
dependent upon many factors including the extent and type of misalignment (i.e. parallel vs angular), coupling type,
bearing type, transmitted-torque level, etc. This makes sense when one considers the possible numerous combinations of
such influential parameters in a modern rotating equipment train and may go some way to explain the spectral variability
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Nomenclature

a shaft overhang dimension
A1, A2, A3 system constants
c load torque constant
[C] damping matrix
Cx, Cy, Ct, Cz damping constants (x and y lateral,

torsional and axial)
Dx, Dy nonlinear bearing parameters
e mass eccentricity
Fxa, Fya bearing static forces due to angular misalign-

ment
Fxp, Fyp bearing static forces due to parallel misalign-

ment
g gravitational constant
h dimension defining mass/inertia location on

shaft
I1, I2 rotor polar moments of inertia
kc coupling angular stiffness constant
kca, kcb coupling angular stiffness
kn, knx, kny bearing nonlinear-stiffness coefficient
kx, ky support stiffness
kc, kt, kz coupling stiffness constants ðkt � I2 �o2

ntÞ

[K] stiffness matrix
L shaft length, Lagrangian
m rotor mass
mx, my bearing nonlinear-stiffness exponents
[M] mass/inertia matrix
MNa;MNb;MNf nonlinear-bearing reaction moments
np no. of coupling bolt-pairs or stiffness-defects
fqg; f _qg; f €qg generalised displacement, velocity and ac-

celeration
{Qi}, {QDi}, {QTdi}, {QTli} generalised force vectors
R1, R2 rotor radii of gyration
t time
T kinetic energy
Td drive torque
TL load torque
u mass unbalance
V potential energy
x1, y1, x2, y2 Rotor2 displacements at bearings 1 and 2
zl shaft axial displacement at coupling
a shaft angular displacement about x-axis
_a shaft angular velocity about x-axis
€a shaft angular acceleration about x-axis
a0 initial angular misalignment about x-axis
b shaft angular displacement about y-axis
_b shaft angular velocity about y-axis
€b shaft angular acceleration about y-axis
b0 initial angular misalignment about y-axis
d shaft parallel offset (misalignment)
li coupling stiffness anisotropy reference angle
onx lateral natural frequency, x-direction, ½ðkxða2 þ

L2Þ þ kcÞ=h�2mL2�1=2

ony lateral natural frequency, y-direction, ½ðkyða2 þ

L2Þ þ kcÞ=h�2mL2�1=2

onz axial natural frequency, z-direction, ½kz=m�1=2

ont torsional natural frequency, ½kt=I2�
1=2

ox, oy, oz angular velocities—rotor 1
oxx, oyy, ozz angular velocities—rotor 2
f rotor 2 rotational displacement
C rotor 1 rotational displacement
_f rotor 2 rotational velocity
t rotor 2 coupling hub skew-angle
Y parallel misalignment reference angle

Dimensionless parameters

a� shaft overhang, a*=a/L
[C*] damping matrix
fx frequency ratio, fx ¼ onx=ony

ft frequency ratio, ft ¼ ont=ony

fz frequency ratio, fz ¼ onz=ony

F�xa; F
�
ya Brg. static forces due to angular misalign-

ment=Fx,ya/a0kyL

F�xp; F
�
yp Brg. static forces due to parallel misalign-

ment=Fx,yp/kyd
g* gravity moment, g� ¼ g=o2

nyL

h* mass location parameter, h*=h/L
k1 stiffness ratio, k1 ¼ kx=ky

k�c coupling stiffness, k�c ¼ kc=kY L2

k�ca coupling stiffness, k�ca ¼ k�c � ½1þ
Pi¼N

i¼1 ai �

cosðifþ liÞ�

k�cb coupling stiffness, k�cb ¼ k�c � ½1þ
Pi¼N

i¼1 ai �

sinðifþ liÞ�

k�nx; k
�
ny nonlinear stiffness coefficient

kv coupling stiffness anisotropy parameter
[K*] stiffness matrix
[M*] mass/inertia matrix
M�Na;M

�
Nb;M

�
Nf dimensionless nonlinear bearing reac-

tion moments
p parallel offset, p ¼ d=L

fq�g; f _q�g; f €q�g generalised response vectors
r1, r2 radii of gyration, r1=R1/L; r2=R2/L
T�d drive torque, T�d ¼ Td=mL2o2

ny

T�L load torque, T�L ¼ TL=mL2o2
ny

x�2; y
�
2 shaft displacements at bearing 2; for parallel

misalignment, x�2 ¼ x2=d; y�2 ¼ y2=d; for angu-
lar misalignment, x�2 ¼ x2=boL; y�2 ¼ y2=boL

z�1 rotor 2 axial displacement
_a� shaft angular velocity about x-axis
€a� shaft angular acceleration about x-axis
_b
�

shaft angular velocity about y-axis
€b
�

shaft angular acceleration about y-axis
zx damping ratio, zx ¼ Cx=2monx

zy damping ratio, zy ¼ Cy=2mony

zz damping ratio, zz ¼ Cz=2monz

zt damping ratio, zt ¼ Ct=2mont

Abbreviations

RS running speed

I. Redmond / Journal of Sound and Vibration 329 (2010) 700–720 701



ARTICLE IN PRESS

I. Redmond / Journal of Sound and Vibration 329 (2010) 700–720702
observed in the field. Given these facts it is surprising that, in comparison to other areas of vibration study, the topic of
shaft-misalignment has received relatively little attention.

Ref. [3] is one of the earliest publications to present equations describing the forces resulting from a misaligned flexible-
element coupling. Dewell and Mitchell [4] analysed a disk-coupling and based on measurements proposed vibration
monitoring of twice and four times per-rev harmonics as a means of diagnosing misalignment. A good summary of the
main publications related to design, analysis and experimental study of flexible-element couplings was provided by Xu and
Marangoni [5] who later performed a theoretical study on a misaligned shaft system [6]. Even-order vibration was
predicted by assuming driven shaft speed fluctuations resulting from the ‘Hooke’s-Joint’ effect. The authors’ provided
experimental data to support their theory, in a companion paper [7].

A series of theoretical studies [8–11] were presented based on the assumption that system 1� and 2� excitation forces
are produced by mass unbalance interaction with shaft speed fluctuations resulting from the Hooke’s Joint effect. Parallel
and angular misalignment were considered and rotor systems with rigid [8] and flexible [9] couplings were investigated. It
was concluded that shaft misalignment had little effect on 1� vibration response while it greatly influenced 2� response.
The same approach was adopted in [10] where second-harmonic response due to misalignment was shown to be more
dominant than that resulting from a shaft crack. Prabhakar et al. [11] investigated the use of wavelets as a condition
monitoring tool to identify misalignment from transient data. It was reported that using this approach a number of sub-
critical speeds could be identified when misalignment was present. Armugam et al. [12] analysed a misaligned two-stage
turbine by representing the coupling reaction forces as a half-sinusoid function, thereby leading to 2� excitation. It was
found that angular misalignment produced a response dominated by even numbered harmonics with amplitude
proportional to transmitted torque.

A combined theoretical and experimental study of a misaligned rotor on ball bearings [13] showed that the natural
frequency was increased and the vibration response decreased, in the direction of the misalignment while only running
speed vibration was observed. Jackson [14] cited examples of industrial machines where misalignment produced
substantial second-harmonic response due to the nonlinear properties of oil-film bearings. Hili et al. [15] presented a
simple theoretical model for angular misalignment which showed vibration components at 1� and 2� running speed and
at the system natural frequency. The reduction of bearing reactions with increasing coupling flexibility was also
demonstrated. Hussain and Redmond [16] analysed misaligned rigidly coupled rotors and concluded that parallel
misalignment is a source of both lateral and torsional excitations. Lees [17–19] and Redmond [20] separately investigated
linear misaligned shaft systems and reported that parallel misalignment can lead to torsional fluctuations which could
produce a significant 2� vibration response in the absence of coupling kinematic excitations and component
nonlinearities. Redmond [20] reported that, in the case of parallel misalignment, support stiffness asymmetry was an
important factor in accentuating 2-per-rev radial and axial vibrations. Lees [21] recently analysed a four-bearing, rigidly
coupled shaft system and compared the level of second-harmonic response produced due to nonlinear bearings with that
resulting from lateral-torsional coupling. He concluded that while it was likely that bearing nonlinearity was the major
source of second-harmonic vibration over a wide range of conditions there were circumstances where coupling between
lateral and torsional motion emerged as a significant source.

In summary, from the literature to date almost all of the analyses performed have assumed the main source of excitation
to be related to 2� forcing components produced by the interaction of mass unbalance and rotor speed fluctuations
emanating from the Hooke’s-joint effect. Interestingly, the author was unable to find any publication validating the
assumption of equivalency between a misaligned flexible-element coupling and a hooke’s-joint coupling. It is clear that
more effort is required to enable a better understanding of the fundamental misalignment-vibration mechanism(s). The
purpose of this paper therefore is to clarify the role and relative importance of the main rotor system parameters in
producing complex vibration signatures in the presence of misalignment. In particular, the influence of coupling-stiffness
anisotropy, bearing nonlinearity, mass unbalance and static torque-transmission effects will be investigated. Since the from
and magnitude of coupling excitation forces is governed largely by the type of coupling employed, then to aid in the
transparency of this study a simple coupling model is employed whereby coupling kinematic influences, such as the
Hooke’s-Joint effect, are excluded. This approach enables effective assessment of the role of other potentially important
sources of system non-harmonic response.
2. Rotordynamic model

The model presented here is an extension of that described in [20]. The 5 degree-of-freedom (DOF) system model is
shown in Fig. 1 and consists of two rigid rotors connected by a flexible-element coupling. The drive rotor (rotor1) is
mounted on rigid supports and has a rotational degree of freedom, c. The driven rotor (rotor2) is supported on bearings
having anisotropic stiffness and damping properties. Bearing nonlinear stiffness effects are also accounted for. The motion
of rotor2 is fully defined by the shaft rotation angle j, angular displacements a and b, and axial motion at the coupling, zl,
all of which are referenced to the inertial x–y–z axes. The flexible coupling has a single point of articulation, shown as point
C in Fig. 1, and is therefore rigid in a radial sense. Coupling angular, torsional and axial flexibility are assumed in addition to
torsional and axial damping. The model also includes for coupling angular stiffness anisotropy.
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Fig. 1. Misalignment model: (a) z–x plane. (b) y–z plane. (c) x–y plane at t�=0.
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The orientation of the (uncoupled) misaligned shafts is determined by the parallel offset magnitude, d and associated
reference angle, y in addition to the angular-offset angles a0 and b0. Drive torque, Td, is assumed constant and applied at
rotor1 while ‘speed-squared’ load torque is exerted at rotor2, thereby enabling investigation of torque transmission effects.
Mass unbalance has been included in the driven rotor whose mass, m, is offset from the shaft geometric centre by an
amount e. Coupling-hub skew, although included in the system model, is not considered in the current analysis as its
influence is addressed fully in [20].
2.1. Shaft misalignment-pre-rotation considerations

It is first necessary to outline the assumptions made with regard to the relative positions of the drive and driven rotors
in the uncoupled and coupled non-rotating states. For ease of visualisation the cases of angular and parallel misalignment
are treated separately (Fig. 2), even though the approach is equally valid for combined misalignment. Fig. 2a shows the
arrangement when only angular misalignment is present. The driven shaft is misaligned with respect to the drive shaft by
an amount a0 and b0 about the x and y axes, respectively. The bearings and coupling element are unstressed at this point.

Subsequent coupling of the shafts will, in general, lead to the driven shaft taking up a new static position defined by the
rotations a and b as shown in Fig. 2b. The coupling element and rotor bearings will now be subjected to a static preload. In
contrast, when parallel misalignment, d, is present it is assumed that coupling of the shafts does not immediately lead to a
change in the strain energy of the coupling or bearings (Figs. 2c and d). Of course, subsequent shaft rotation will, in general,
further alter this situation. The corresponding shaft displacements at the bearing locations are of great practical
importance and the governing relationships are defined by Eq. (A.2) in Appendix A. However, in order to fully utilise this
information it will be necessary first to obtain the system equations of motion.
2.2. Derivation of equations of motion—linear system

To obtain the equations of motion for the coupled system it is first necessary to derive the system kinetic and potential
energy functions.
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2.2.1. Energy expressions

The system generalized coordinate is described by

fqg ¼ ½a;b;c;f; zl� (1)

The total kinetic energy, T, can be written in terms of the system translational and rotational velocities, so that T ¼

TTrans þ TRot where, referring to Eq. (A.3) in Appendix A the mass translational kinetic energy can be written as,

TTrans ¼
1
2m � ½ _x2

m þ _y2
m þ _z

2
m� (2)

and it can be shown that the combined rotational kinetic energy for rotors 1 and 2 is

TRot ¼
1
2 Iz½o2

z � þ
1
2 Ix0 ½o2

x0 � þ
1
2 Iy0 ½o2

y0 � þ
1
2Iz0 ½o2

z0 � (3)

where ox; oy and oz are the rotor1 angular velocities about the inertial axes while ox0 ; oy0 and oz0 are the corresponding
rotor2 body-axes angular velocities so that,

oz ¼
_c;ox0 ¼ _a cosb� _f sinb;oy0 ¼

_b cosaþ _f sina;oz0 ¼
_f cosa cosb (4)

Ignoring gyroscopic and rotary-inertia terms ðIz ¼ I1 and Iz0 ¼ I2Þ the total kinetic energy can be written as

T ¼
1

2
m
½�e _j sinjþ _bh� d _j sinðjþ yÞ�2 þ ½e _j cosjþ d _j cosðjþ yÞ � _ah�2

þ½e cosjð _j sina� _bÞ þ e sinjð _a þ _j sinbÞ þ _zl � h _b cosa sinb� h _a sina cosb�2

" #( )
TTrans

þ
1

2
I1
_c

2
þ

1

2
I2ð _j cosa cosbÞ2

� �
TRot

(5)

The system total potential energy, V, is derived from bearing and coupling strain energy in addition to gravitational effects,

V ¼ Vbrgx þ Vbrgy þ VcAng þ VcTors þ VcAxial þ Vgrav (6)

which becomes,

V ¼ ½12 kx ½aðb� b0Þ þ dðcosðfþ yÞ � cosyÞ�2 þ ½Lðb� b0Þ þ dðcosðfþ yÞ � cosyÞ�2
� �

�brgx

þ ½12 ky ½aða0 � aÞ þ dðsinðfþ yÞ � sinyÞ�2 þ ½Lða0 � aÞ þ dðsinðfþ yÞ � sinyÞ�2
� �

�brgy

þ ½12 kc ða� t cosfÞ2 þ ðbþ t sinfÞ2
n o

�cAng

þ ½12 kt c� f cosa cosbg2�cTors þ ½
1
2kzz2

l �cAxial � ½m � g � ½a � hþ d sinðfþ yÞ��grav

n
(7)

2.2.2. Coupling angular stiffness anisotropy

In the general case the coupling is assumed to exhibit angular stiffness anisotropy so that coupling angular stiffness
about the stationery x and y axes, respectively, can be defined,

kca ¼ kco½1þ
Xi¼N

i¼1

ai cosðifþ liÞ�andkcb ¼ kco½1þ
Xi¼N

i¼1

ai sinðifþ liÞ� (8)

The dimensionless coefficients ai define the relative magnitudes of the coupling stiffness asymmetry components with
respect to the coupling mean stiffness kco and i=1, 2,y,N where N is the number of cyclic components required to define the
coupling stiffness anisotropy. Note that while the coupling stiffness coefficients defined by (8) are clearly speed-dependent
they remain independent of the system response and are therefore linear.
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2.2.3. Generalised forces

2.2.3.1. Bearing damping forces. Non-conservative bearing viscous damping is introduced in the form of generalized forces,
QDi, by considering the associated incremental work done dW. For our case, ignoring second- and higher-order terms and
assuming small angles (sin xEx; cos xE1), the generalized damping force vector is

fQDig
T ¼ �Cyða2 þ L2Þ � _a a �Cxða2 þ L2Þ � _b a � Ct �

_c þ Ct �
_f a �Ct �

_c � Ct �
_f a �CZ � _zl

n o
(9)

2.2.3.2. External applied forces. The applied drive and load torques, Td and TL, are also generalized forces which, when
transformed to the model stationary x–y–z coordinate system, give the corresponding generalized force vectors

fQTdig
T ¼ 0 ‘ 0 ‘ Td ‘ 0 ‘ 0

� �
(10)

fQTLig
T ¼ �b � TL ‘ a � TL ‘ 0 ‘ TL � cosa � cosb ‘ 0

n o
(11)

For the purpose of subsequent analysis, drive torque Td is considered constant and load torque TL is assumed proportional
to the square of the driven rotor speed (TL ¼ c � _f

2
).

2.2.4. Equations of motion

From Lagrange’s Equations, where L is the Lagrangian (L=T�V), we get

d

dt

qL

q _qi

�
qL

qqi
¼ Qi ¼ QDi þ QTdi þ QTli (12)

where Qi contains all system generalized forces. The resulting system equations of motion can be written as

½M�f €qg þ ½C�f _qg þ ½K�fqg ¼ fFg (13)

and these equations can be non-dimensionalised to give

½M��f €q�g þ ½C��f _q�g þ ½K��fq�g ¼ fF�g (14)

Appendix B provides full details of the dimensional equations of motion, Eq. (13), and their dimensionless counterparts, Eq.
(14).

2.3. Inclusion of nonlinear bearings

Nonlinear bearing stiffness forces are obtained by applying Newton’s method. These forces are then added to the earlier
derived linear bearing forces to simulate bearings exhibiting ‘hardening-spring’ characteristics (Fig. 3). The additional
bearing stiffness force resulting from nonlinear influences is assumed to take the general form,

Fknl ¼ kn � signðxÞ � jxjm (15)

The parameters kn and m determine the magnitude and nature of the bearing nonlinear stiffness. The nonlinear bearing
forces produce bending moments, M�Na; M�Nb and M�Nf, about the x, y and z axes, respectively as shown in Appendix C. The
resulting dimensionless moments M�Na; M�Nb and M�Nf are presented in Eqs. (C.8)–(C.10), Appendix C.

To enable the inclusion of bearing nonlinear stiffness effects in the equations of motion, Eq. (14) is updated so that force
vector fF�g is replaced with modified force vector fF�gNL, to give the final dimensionless equations of motion,

½M��f €q
�
g þ ½C��f _q�g þ ½K��fq�g ¼ fF�gNL (16)
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where

fF�gNL ¼ fF
�g þ M�Na a M�Nb a 0 a M�Nf a 0

n oT
(17)

3. Analysis

3.1. Analysis approach and model parameters

The system equations of motion (17) were solved numerically using Matlab routine ode45 to compute the transient
response for a variety of model configurations designed to enable assessment of a number of important system parameters
in isolation. In each case the analysis was run until a steady-state solution was reached and FFT applied to the subsequent
time-record to obtain amplitude–frequency information. The dimensionless time-step, Dt� was set at 0.03. In all analyses
cases rotor2 overhang dimension a� is set at 0.1 and its mass m is considered located centrally between the bearings, i.e.
h�=0.55. Additionally, it is assumed that rotor2 inertia is small in comparison with that of rotor1, so that r1/r2=10 and
r1=1.0. For data presentation purposes shaft displacements and bearing forces are shown only for bearing 2 location,
denoted as point E in Fig. 1.

3.2. Static displacements and forces (non-rotating system)—misalignment only

Table 1 provides a summary of the model dimensionless parameters selected for the static (non-rotating) analyses
presented here. Where alternative parameter values have been used this has been highlighted.

The system static displacements and forces are easily obtained from Eq. (13) by eliminating all dynamic variables [20].
For presentation purposes the shaft angular displacements are normalized with respect to the original misalignment, a0

and the bearing forces are normalized with respect to the bearing force which would occur if the shaft displacement was
set equal to the respective misalignment value (i.e. a0 for angular and p for parallel misalignment). Linear bearings are
assumed for the static cases to enable transparency in the result interpretation.

3.2.1. Angular misalignment only (a0a0; b0=0)

Figs. 4a and b illustrate the influence of coupling stiffness and transmitted torque on the driven shaft static
displacement and bearing loading, respectively, when subjected to angular misalignment. Both figures confirm that when
the shafts are coupled, with no torque present, then system static displacements and bearing preloads are induced, in the
plane of the original misalignment (i.e. b=0). Shaft displacements and bearing loading increase as coupling stiffness is
increased. This effect is amplified as torque is applied, since the increased tendency of the driven shaft is to align itself with
the drive shaft. It is seen that the application of torque in the presence of angular misalignment leads to the emergence of
shaft static deflections and bearing loading normal to the misalignment plane. The plots also show there is an intermediate
torque level at which these normal displacements and bearing forces reach a maximum value.

When bearing stiffness anisotropy (k1a1) is introduced, although not shown here, a reduction in the shaft displacement
in the direction of increased bearing stiffness is observed in addition to the increased bearing force in this direction.

3.2.2. Parallel misalignment only (pa0; y=901)

Initially the rotational axes of both shafts are parallel and offset, by the dimensionless amount p, in the y–z plane.
The shafts remain in this position even when coupled and the bearings remain unloaded. However, upon slow rotation
Table 1
Model default parameter values—static case.

Parameter description Symbol Value

Coupling angular stiffness k�co Variable

Steady-state rotor speed _f
� 0

Drive torque T�d Variable

Brg. linear-stiffness anisotropy k1 1 or 3

Brg. nonlinear stiffness constants knx, kny 0

Cplg. anisotropy parameter kv 0

Angular misalignment a0 a0

Angular misalignment b0 0

Parallel offset p 0.002

Parallel offset reference angle y 901

Gravity constant g� 0
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of the shaft system the driven shaft is displaced from its original position and both shafts are subjected to fluctuating
forces. Fig. 5a plots the locus of the mean value of the force (preload) induced at bearing 2 as a function of coupling stiffness
and transmitted torque, for the isotropic bearing arrangement. As with the case of angular misalignment, increasing the
coupling angular stiffness leads to larger bearing static forces in the misalignment plane.

Additionally, the introduction of torque amplifies the bearing forces while inducing bearing loads normal to the plane of
the misalignment. Shaft static displacements, although not shown, follow the same pattern as the presented bearing forces.
The maximum displacements (and bearing loads) occur when the coupling becomes rigid and/or when the transmitted
torque is large. The bearing stiffness anisotropy (k1=3) leads to reduced shaft displacements in the direction of increased
bearing stiffness and corresponding increased bearing static loading (Fig. 5b).

It is clear from the preceding sections and reference to Figs. 4 and 5 that the relative orientation of angular and parallel
misalignment would have a considerable influence on the resultant magnitude and direction of the induced bearing forces.
This is important, particularly in machinery utilizing fluid-film bearings whose properties can vary greatly depending on
the magnitude and direction of the bearing static loading.



ARTICLE IN PRESS

I. Redmond / Journal of Sound and Vibration 329 (2010) 700–720708
3.3. Dynamic response—rotating system

Table 2 provides a summary of the model nominal dimensionless parameters selected for the dynamic (i.e. rotating)
analyses presented here. Where alternative parameter values have been employed they are clearly highlighted in the
relevant section.

For these simulations nonlinear bearings are assumed (knx & knya0). The dynamic analyses were performed using a
‘low’ drive torque setting just sufficient to balance the load torque and ensure a stable operating speed, therefore the
influence of drive torque on the system dynamic response can be considered negligible. In addition, analysis results are
presented mainly for shaft motions in the x-direction, x�2, as the response normal to this was found to be largely unaffected
by the misalignment effect.

3.3.1. Angular misalignment only (b0=0.002)

Examination of Eq. (14) shows that when shaft rotation is introduced in the presence of angular misalignment the
system static displacements and forces remain unchanged and there is no dynamic response [20]. However, an induced
internal static loading (i.e. preload) does lead to each rotating element being subjected to stress reversal as demonstrated in
the following section.

3.3.1.1. Angular misalignment with mechanical unbalance (b0=0.002; u=0.001). The misalignment-induced static preload
leads to a change in the static bearing stiffness so that when mass unbalance is introduced the driven shaft will vibrate
along a different portion of the nonlinear stiffness characteristic curve (Fig. 3). Fig. 6a shows the resulting non-circular shaft
displacement orbits which exhibit asymmetry about the y-axis due to the preload being applied along the x-axis. Increasing
the coupling stiffness also augments the bearing static preload (Fig. 6b) leading to reduced 1-per-rev bearing-force
response while introducing a small but significant second-harmonic component. The coupling transmitted force consists of
combined static and dynamic components (Fig. 6c) both of which increase as the coupling stiffness is raised. Increased
coupling stiffness may exist, for example, in cases of severe misalignment where the coupling is forced to operate in its
nonlinear region. The coupling static force results directly from the mechanical unbalance force and its magnitude is
determined by the relative angular location of the mass unbalance and the respective element fixed on the coupling. In the
case shown in Fig. 6c the transmitted force is computed for a coupling element considered to be in-line with the unbalance
(i.e. y=01). The coupling elements are seen to be subjected to a predominantly synchronous alternating force which
emanates from the imposition of the misalignment-induced static preload. This raises the prospect of fatigue failure in the
rotating components.

3.3.1.2. Angular misalignment with coupling stiffness anisotropy (b0=0.002; kv=0.2). The analyses presented within are per-
formed for a specific coupling stiffness characteristic which is representative of a commonly employed disc-type, flexible-
element coupling discussed in [4,10]. Coupling angular stiffness, about the x and y axes, respectively, is defined by,

kca ¼ kcf1� kv½1� jcosðnp � fþ lþ ðp=2ÞÞj�g (18)
Table 2
Model default parameter values—dynamic case.

Parameter description Symbol Value

Coupling angular stiffness k�co 0.05

Steady-state rotor speed _f
� 0.75

Drive torque T�d 8.e�5

Brg. linear-stiffness anisotropy k1 1.0

Brg. nonlinear stiffness constants knx, kny 110

Brg. nonlinear stiffness force exponents mx, my 2

Cplg. anisotropy parameter kv 0.2

Cplg. anisotropy order np 1

Angular misalignment a0 0

Angular misalignment b0 0.002

Parallel offset p 0.002

Parallel offset reference angle y 01

Gravity constant g* 0

Mass-eccentricity u 0.001

Torsional frequency ratio ft 1.3

Axial frequency ratio fz 0.1

Bearing damping factor—x direction zx 0.03

Bearing damping factor—y direction zy 0.03

Coupling axial damping factor zz 0.01

Coupling torsional damping factor zt 0.001

Cplg. hub skew t 0
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Fig. 6. Combined angular misalignment and mass unbalance: (a) Shaft displacement. (b) Bearing 2 transmitted force. (c) Coupling transmitted force.
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and

kcb ¼ kc � f1� kv � ½1� jcosðnp:fþ lÞj�g (19)

where kv represents the ratio of coupling stiffness variation to the maximum coupling stiffness and np is the number of
coupling bolt-pairs or alternatively the number of ‘defects’, where a defect may be considered as a localized reduction in
coupling stiffness. The stiffness coefficients are clearly linear and speed-dependent. Fig. 7 shows the characteristic stiffness
function (kca versus f) for a coupling considered to have a single defect (np=1), which produces a 2-per-rev stiffness
variation. The angular location of the defect is referenced to a plane fixed on the driven rotor and coincidental with the
misalignment-plane at zero rotation ( _f

�
¼ 0), using the angle l. For the cases considered in this section l=01.

Fig. 8a shows that the static preload resulting from angular misalignment interacts with the coupling anisotropy leading
to a dominant 2-per-rev shaft response along the x-axis. The plot is for a fixed rotor speed _f

�
¼ 0:75 and the resulting shaft

response is seen to be further amplified as coupling stiffness is increased. There is no vibration response normal to the
preload direction so that the shaft motion is along a line coincident with the x-axis. Although the response levels are
relatively low there are other factors that can make the anisotropy effect more pronounced. Fig. 8b illustrates how the
coupling anisotropy excites the system natural frequency at speeds corresponding to 1

4 and 1
2 of the natural frequency, as a

result of the 4-per-rev and 2-per-rev excitations, respectively. In addition, the relative importance of this effect in real
machinery would clearly be greatly dependent upon the level of damping present, an important factor in machinery having
low damping, such as rolling-element bearing installations.
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3.3.2. Parallel misalignment only (p=0.002; y=01)

The model results show that, in contrast to angular misalignment, parallel misalignment produces both static and

dynamic system response. The parallel offset, p, creates a crank-effect where the crank-arm is denoted by the line OC in
Fig. 1c. The shaft coupling end, shown as point C, is subjected to synchronous displacement excitation. The driven shaft
response, although dominated by a synchronous component, in general contains higher harmonics (Fig. 9a). It is seen that
as the coupling stiffness k�co is increased the shaft mean position, in the direction of the x-axis, is displaced further from its
original position. The shaft mean position along the y-axis remains unaltered. In conjunction with this, the shaft
displacement orbits become more distorted as second-harmonic content is raised (Fig. 9b). Increasing the offset p also
increases the bearing preload resulting in greater bearing stiffness asymmetry and therefore has a similar effect. In
particular, increased misalignment produces multi-harmonic shaft speed fluctuations (Fig. 9c). Such speed fluctuations
could be important in exciting system torsional frequencies in some circumstances [20].
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Fig. 9. Parallel misalignment only: (a) Shaft response orbits. (b) Shaft displacement x2
* . (c) Rotor speed versus offset p. (d) Bearing Force Fx (e) Coupling

transmitted force Fc.
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Bearing forces follow the pattern of shaft displacements. In the plane of the misalignment static, first and second-
harmonic bearing-force components are present and increase with coupling stiffness (Fig. 9d). The coupling transmitted
force is dominated by 1-per-rev fluctuation (Fig. 9e), resulting from the misalignment-induced static preload, which
imposes stress-reversal on the coupling flexural elements. As shown, a significant static coupling force also exists.

3.3.2.1. Parallel misalignment with mechanical unbalance (p=0.002; u=0.001). As expected, the addition of mass unbalance
has a substantial influence on the shaft and bearing-force response. Shaft displacement is predominantly synchronous but
significant second- and third-harmonic components are also influenced by the unbalance (Fig. 10a), due to bearing
nonlinearity. The resultant system response is mainly governed by the angle y which fixes the misalignment plane in the
stationary axes and also determines the relative angular orientation of the unbalance with respect to the misalignment
‘crank-arm’ OC (Fig. 1c). The shaft static displacement of course remains unaltered and is therefore not shown. Fig. 10a
shows that, for a fixed speed of _f

�
¼ 0:75, the first three harmonic components of displacement can be minimized when

yE1601. This ‘optimum’ value of y will vary depending on the operating speed, _f
�

and misalignment offset value, p. This is
because the dynamic behaviour of a system with parallel misalignment and unbalance is very similar to one where mass
unbalance is combined with a shaft bow. Therefore, the model results indicate that vibration resulting from misalignment
could be substantially reduced through mechanical balancing, though selection of the correction mass and angular location
using conventional balance procedures may be more difficult due to the presence of system nonlinearities. Of course, even
if dynamic response is reduced using this approach the static bearing preload would still remain.

Another interesting aspect is the influence of the unbalance angular location on the magnitude of the 1-per-rev speed
fluctuation (Fig. 10b). The speed fluctuation is greatest when y=901 and 2701, i.e. when the unbalance is normal to the
‘crank-arm’. This effect is thought to be related to the unbalance-mass tangential acceleration forces whose magnitude
would vary according to the angular location of the unbalance.

3.3.2.2. Parallel misalignment with coupling stiffness anisotropy (p=0.002; y=0; kv=0.2). Coupling stiffness anisotropy was
simulated by applying the stiffness characteristics defined by Eqs. (18) and (19) for a shaft speed of _f

�
¼ 0:75. The

parameter l specifies the angular location of the stiffness ‘defect’ in relation to the misalignment crank-arm OC (Fig. 1c).
Fig. 11a shows the computed shaft displacement x�2 as a function of the coupling stiffness, k�c , for l=01 and kv=0.2. Although
the displacement trends are seen to be similar to those for the case of parallel misalignment alone (Fig. 9b) the inclusion of
coupling anisotropy has significantly reduced the second-harmonic component while only slightly altering the static
displacement. The full influence of the anisotropy becomes clearer in Fig. 11b where the importance of the angular location
of the stiffness defect is evident. The misalignment-induced static preload interacts more effectively with the anisotropy
when the stiffness defect is normal to the misalignment crank-arm (l=901 or 2701) to produce a substantial increase in the
2-per-rev vibration. However the maximum amplitudes are relatively low representing approximately 3 percent of the
first-harmonic and 30 percent of the mean displacement values, respectively. The mean shaft displacement is also seen to
be sensitive to the location of the anisotropy, exhibiting a variation of more than 30 percent.

Fig. 11c confirms that, for this case, even when the coupling anisotropy is substantial (kv=0.5) the shaft motion is still
dominated by synchronous response and the anisotropy associated component, i.e. the second-harmonic, is small by
comparison. Clearly this situation can change depending upon the proximity of the anisotropy-related excitation
Fig. 10. Combined parallel misalignment and mechanical unbalance: (a) Shaft displacement versus offset angle y. (b) Rotor speed versus offset angle y.
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Fig. 11. Combined parallel misalignment and coupling anisotropy: (a) Shaft displacement versus coupling stiffness. (b) Influence of anisotropy orientation

angle l. (c) Influence of anisotropy parameter kv. (d) Shaft displacement cascade plot.
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frequencies and the system natural frequencies. This feature is demonstrated in Fig. 11d where the shaft displacement
frequency spectrum is shown for a speed range _f

�
¼ 0 to 0.6. As the rotor speed reaches a value corresponding to half of

the first natural frequency the double-frequency vibration emerges strongly and is now a much larger proportion of the
total response.

3.3.3. Influence of increased bearing stiffness nonlinearity

It is important to consider the influence of nonlinear effects which can play a major role in modern rotating machinery
due to for example rolling-element [13] or fluid-film [14,21] bearings. In the earlier simulations a ‘low-level’ of bearing
nonlinearity was assumed (k�nx;ny ¼ 110; mx;y ¼ 2) to aid in focusing the analyses on the influence of other parameters
unrelated to bearing nonlinearities. This nonlinear stiffness value was considered low since for shaft dimensionless
displacements of approximately 0.001 the estimated change in system natural frequency was less than 1 percent.
Consequently, in this section a greater range of nonlinear parameters is considered. Fig. 12a illustrates the influence of
parallel misalignment on the model natural frequency for two different forms of bearing stiffness nonlinearity, i.e. for
mx,y=2 with k�nx;ny ¼ 0:4e3=1:0e3 and mx,y=3 with k�nx;ny ¼ 0:4e6=1:0e6. The maximum values for the stiffness coefficients,
k�nx;ny (1.0e3 for mx,y=2; 1.0e6 for mx,y=3), were chosen so that, for a realistic dimensionless shaft deflection (x2/L) of 0.001,
the bearing force produced in the nonlinear systems would be twice that for the linear case. Therefore, for the purpose of
this work these maximum nonlinear stiffness values are considered ‘high’ due to their significant influence in increasing
the system natural frequency (45%) for moderate levels of displacement. Consequently, all other nonlinear stiffness values
used in the analyses were selected relative to these values to simulate bearings having stiffness qualities covering a range
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from linear to ‘highly’ nonlinear. The figure shows the influential effect of the misalignment offset, p, in raising the system
natural frequency as a result of the increased static preload.

Figs. 12b–d, describe the model vibration response when the bearing nonlinear stiffness force exponents, mx and my are
set at 2. The effect of increasing nonlinear coefficients k�nx and k�ny, for fixed speed _f

�
¼ 0:75, is clearly demonstrated in

Fig. 12b. It is shown that only simple harmonic response is exhibited when linear bearings are employed, i.e. when
k�nx ¼ k�ny ¼ 0. This is to be expected for a purely linear system subjected to harmonic excitation. However, as the bearing
nonlinearity is enhanced this harmonic motion is transformed into multi-harmonic response, dominated by 2-per-rev
vibration. The influence of increasing parallel offset, p on the shaft displacement response for a case considered to
represent ‘high’ bearing nonlinearity (k�nx ¼ k�ny ¼ 1:0e3) is illustrated in Fig. 12c. The emergence of a strong 2-per-rev
vibration component results from the increased static preload which increases the bearing nonlinearity as demonstrated in
Fig. 3. Another important aspect in parallel misaligned nonlinear systems is the proximity of rotor speed harmonics to
system natural frequencies. Fig. 12d shows how the shaft displacement harmonic content can vary significantly with rotor
speed and system resonances can occur at speeds corresponding to submultiples of the rotor system natural frequencies. In
this case clear resonances are observed at one-third and one-half of the rotor system first natural frequency.

The bearing nonlinear force-shaft displacement characteristic selected for the analysis will clearly play a major role in
determining the form and magnitude of the system response. In Fig. 12e the shaft displacement trajectories are shown for
the same constant speed case where increasing bearing nonlinearity is considered (k�nx ¼ k�ny ¼ 0:2e620:8e6) and quadratic
bearing stiffness (mx,y=3) is assumed. The shaft displacement plots presented are considered typical of those frequently
observed in the field on rotating machinery having fluid-film bearings and subjected to misalignment, where significant
second-harmonic response is characteristic. These plots provide further confirmation of the important role of parallel
misalignment in conjunction with system nonlinearities in producing harmonically rich rotor system vibration signatures.
4. Conclusions

A representative shaft misalignment model which incorporates many of the important characteristics present in real
rotating machinery has been presented. The model was used to study the dimensionless dynamic response of flexibly
coupled misaligned rotors when subjected to parallel and angular misalignment. The influence of a number of key system
parameters including bearing nonlinearity, coupling anisotropy, mass unbalance and drive torque was assessed.

This study shows that shaft displacements and bearing forces resulting from angular and parallel misalignment are
fundamentally different. Both types of misalignment lead to the imposition of a static bearing preload. However, in the
absence of other (internal or external) excitation sources, only parallel misalignment produces system dynamic response
while angular misalignment generates purely static forces and displacements.

Parallel misalignment-induced dynamic excitation is predominantly synchronous in nature due to the parallel-offset
crank-arm effect which also produces fluctuations in the rotor speed. In both misalignment cases the resulting static
preload can play a major role in creating complex vibration response through interaction with rotating-element anisotropy
and bearing nonlinearities. It is worth noting that in contrast to nonlinear bearing effects, coupling anisotropy generates
response-harmonics due to the presence of speed-dependent, but linear, stiffness coefficients. Both coupling stiffness
anisotropy and bearing nonlinearity lead to modification of the system response mainly in the plane of the misalignment.
Also, the rotating elements are subjected to alternating forces which may raise fatigue issues. Increasing coupling stiffness
results in the imposition of greater static bearing forces, static shaft displacements and rotating-element alternating forces.
This effect is reinforced further by the application of low-level drive torque.

The model results showed that the introduction of rotating-element anisotropy and bearing nonlinearity in the presence
of misalignment resulted in augmentation of complex multi-harmonic system response, with dominant vibration
amplitudes observed to occur mainly at rotor speed and its second harmonic. In the misalignment cases studied the
introduction of bearing nonlinearity had a more dramatic effect in altering the system vibration response than that of rotor
anisotropy.

In all cases the coupling stiffness was found to be a major controlling factor in determining the system dynamic
response. While increasing the coupling stiffness led to greater shaft vibration response and dynamic bearing forces in
parallel-misaligned systems the opposite was found to be true for angularly misaligned systems.

In well-aligned rotor systems vibration response is governed mainly by the amount of mass unbalance, level of damping
available and proximity of running-speed to system natural frequencies. However, the investigation performed here shows
that in misaligned machinery a number of additional influential parameters can greatly alter the nature and level of rotor
vibration, rotating-element stresses and associated bearing forces:
�
 Misalignment type (angular or parallel) and magnitude

�
 Coupling stiffness

�
 Relative orientation of mass unbalance

�
 Magnitude and relative orientation of rotating-element anisotropy

�
 Magnitude and form of bearing nonlinearities

�
 Proximity running-speed harmonics to system natural frequencies
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�
 Relative orientation of angular and parallel misalignment

�
 Drive torque magnitude
The results presented here probably go some way to explain the main reasons for the observed variability in the vibration
character of apparently similar, or even identical, misaligned machines.

More specifically, based on the work presented here and in [20,21] it is the author’s contention that, even though
numerous factors influence the misalignment-vibration relationship, one of the major contributory factors towards the
production of 2-per-rev and other harmonic vibration components is most likely the modification of system properties
resulting from interaction of the misalignment-induced static preload with machine component nonlinearities such as
those present in fluid-film and rolling-element bearings.

To the author’s knowledge the misalignment model presented within addresses many important features not previously
studied in the technical literature.
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Appendix A

A.1. Coordinate transformation

Assuming the body axes for rotor2 to be x0–y0–z0 then the location of any point on the driven shaft can be transformed to
the inertial coordinate system x–y–z from, fXg ¼ ½T� � fX0g þ fX0g where fXgT ¼ fx y zg, fX0gT ¼ fx0 y0 z0g and
fX0g

T ¼ fd � cosðfþ yÞ d � sinðfþ yÞ zlg. T is the transformation matrix and for small angles, a and b, the relationship
becomes

x

y

z

8><
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9>=
>; ¼

cosf �sinf b
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a � sinf� b � cosf a � cosfþ b � sinf cosa � cosb
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8><
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9>=
>;þ

d � cosðfþ yÞ
d � sinðfþ yÞ

zl

8><
>:

9>=
>; (A.1)

Therefore, shaft displacements at the bearing locations (z0=a, L) for the coupled case, relative to the uncoupled static
positions (Fig. 2), can be determined as,

x1 ¼ d � ½cosðfþ yÞ � cosy� þ a � ½b� b0�

y1 ¼ d � ½sinðfþ yÞ � siny� � a � ½a� a0�

x2 ¼ d � ½cosðfþ yÞ � cosy� þ L � ½b� b0�

y2 ¼ d � ½sinðfþ yÞ � sin y� � L � ½a� a0� (A.2)

where a and b are determined from the system equations of motion (13).
The driven-rotor mass, m, located at distance h from the coupling, is offset from the shaft axis by an amount e and lies in

the x–z plane at t�=0, (Fig. 1c). Therefore mass displacement in the stationary x–y–z coordinate system is determined from
Eq. (A.1) so that the mass translational velocities _xm, _ym and _zm can be computed from

_x

_y

_z

8><
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9>=
>;

m

¼
d

dt

x
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z
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m

¼
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e � _f � cosf� _a � hþ d � _f � cosðfþ yÞ

e � ða � _f � cosfþ _a � sinfþ b � _f � sinf� _b � cosfÞ
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(A.3)
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Appendix B

B.1. System equations of motion

The full mass, stiffness, damping and force matrices for the derived system equations of motion (13) are as follows:

½M� ¼

mh2 0 0 �m � h � ½e cosfþ d cosðfþ yÞ� m½e sinf� ha�
0 mh2 0 �m � h � ½e sinfþ d sinðfþ yÞ� �m½e cosfþ hb�
0 0 I1 0 0

�m � h � ½e cosfþ d cosðfþ yÞ� �m � h � ½e sinfþ d sinðfþ yÞ� 0 I2 � ðcos2 a � cos2 bÞ þmd2 0

m½e sinf� ha� �m½e cosfþ hb� 0 0 m

2
6666664

3
7777775

(B.1)

½K� ¼

kyða2 þ L2Þ þ kc � ½1þ
Xi¼N

i¼1

ai � cosðifþ liÞ� 0 0 0 0

0 kxða2 þ L2Þ þ kc � ½1þ
Xi¼N

i¼1

ai � sinðifþ liÞ� 0 0 0

0 0 kt �kt cosa cosb 0

0 0 �kt cosa cosb kt cos2 a cos2 b 0

0 0 0 0 kz

2
66666666666664

3
77777777777775

(B.2)

½C� ¼

Cyða2 þ L2Þ 0 0 �Cyðaþ LÞd cosðfþ yÞ � Cyða2 þ L2Þsinb 0

0 Cxða2 þ L2Þ 0 �Cxðaþ LÞd sinðfþ yÞ þ Cxða2 þ L2Þsina 0

0 0 Ct �Ct cosa cosb 0

�Cyðaþ LÞd cosðfþ yÞ � Cyða2 þ L2Þsinb �Cxðaþ LÞd sinðfþ yÞ þ Cxða2 þ L2Þsina �Ct cosa cosb Ct cos2 a cos2 bþ ½Cy � Cx� � d
2 cosð2fþ 2yÞ þ ½Cy � Cx� � d

2 0

0 0 0 0 Cz

2
6666664

3
7777775

(B.3)

fFg ¼

kyða2 þ L2Þa0 � kyðaþ LÞd sinyþ kyðaþ LÞd sinðfþ yÞ � ½kc � ½1þ
Xi¼N

i¼1

ai � cosðifþ liÞ�� � t � cosf�mhd _f
2
� sinðfþ yÞ þmhe½ _a2

þ _b
2
� _f

2
� � sinf� TL sinbþmhg

kxða2 þ L2Þ � b0 þ kxðaþ LÞ � d cosy� kxðaþ LÞ � d cosðfþ yÞ � ½kc � ½1þ
Xi¼N

i¼1

ai � sinðifþ liÞ�� � t � sinfþmhd _f
2
� cosðfþ yÞ �mhe½ _a2

þ _b
2
� _f

2
� � cosfþ TL sina

Ti

½kx � ky� � d
2 sinð2fþ 2yÞ � kxd

2
ð2 sinðfþ yÞ � cosyÞ þ ky � d

2
� ð2 cosðfþ yÞ � sinyÞ � kx � ðaþ LÞ � d � sinðfþ yÞ � ðb0 � bÞ � kyðaþ LÞ � d � cosðfþ yÞ � ða0 � aÞ � TL cosa cosb�mg½d � cosðfþ yÞ þ e cosf�

mhð _a2
þ _b

2
Þ � 2 �me _a _f cosf� 2 �me _b _f sinf

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(B.4)
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B.2. Dimensionless equations of motion

Ignoring small second-order terms, including gravitational effects and assuming small angular displacements (sina=a;
sinb=b), the equations of motion (B.1)–(B.4) are non-dimensionalised by dividing through by mo2

nyL2 and defining
dimensionless time t�=ony � t. Then,

½M��f €q
�
g þ ½C��f _q�g þ ½K��fq�g ¼ fF�g (B.5)

and the dimensionless generalized coordinates are defined

q�
� �

¼ a;b;c;f; zl

L

n oT

¼ a�;b�;c�;f�; z�l g
T

�
(B.6)

_q�
� �

¼
_a

ony
;
_b

ony
;
_c

ony
;
_f

ony
;
_zl

onyL

( )T

¼ _a�; _b
�
; _c
�
; _f
�
; _z�l g

T
n

(B.7)

€q
�� �
¼

€a
o2

ny

;
€b

o2
ny

;
€c

o2
ny

;
€f

o2
ny

;
€zl

o2
nyL

( )T

¼ €a�; €b
�

; €c
�

; €f
�

; €z
�

l g
T

n
(B.8)

Note that all system natural frequencies are normalized with respect to the lateral frequency of the driven rotor in the y-
direction, ony. Other dimensionless parameters are defined in the nomenclature. The reduced dimensionless system
matrices are,

Mass matrix

½M�� ¼

h�2 0 0 �h� � ½u cosfþ p cosðfþ yÞ� ½u sinf� h�a�
0 h�2 0 �h� � ½u sinfþ p sinðfþ yÞ� �½u cosfþ h�b�
0 0 r2

1 0 0

�h� � ½u cosfþ p cosðfþ yÞ� �h� � ½u sinfþ p sinðfþ yÞ� 0 r2
2 0

½u sinf� h�a� �½u cosfþ h�b� 0 0 1

2
6666664

3
7777775

(B.9)

Stiffness matrix

½K�� ¼

h�2
ð1þ a�2 þ k�caÞ

ð1þ a�2 þ k�c Þ
þ ð _a�2 þ _b

�2
Þ

� �
0 0 0 0

0 h�2
k1ð1þ a�2Þ þ k�cb
ð1þ a�2 þ k�c Þ

þ ð _a�2 þ _b
�2
Þ

" #
0 0 0

0 0 f 2
t � r

2
2 �f 2

t � r
2
2 0

0 0 �f 2
t � r

2
2 f 2

t � r
2
2 0

0 0 0 0 f 2
z

2
6666666666664

3
7777777777775

(B.10)

Damping matrix

½C�� ¼

2 � zyð1þ a�2Þ 0 0 0 0

0 2 � fxzxð1þ a�2Þ 0 0 0

0 0 2 � r2
2 � zt � ft �2 � r2

2 � zt � ft 0

0 0 �2 � r2
2 � zt � ft 2 � r2

2 � zt � ft 0

0 0 0 0 2 � fz � zz

2
66666664

3
77777775

(B.11)

and the dimensionless force vector is

fF�g ¼

fA1 � a0 � A2 � p � sinyg þ A2 � p � sinðfþ yÞ � A3 � k
�
ca � t � cosf� h� _f

�2
� ½p � sinðfþ yÞ� þ h� � ð _a�2 þ _b

�2
� _f

�2
Þ � u � sinf� b � T�L

k1 � fA1 � b0 þ A2 � p � cosyg � k1 � A2 � p � cosðfþ yÞ � A3 � k
�
cb � t � sinfþ h� � _f

�2
� ½p � cosðfþ yÞ� � h� � ð _a�2 þ _b

�2
� _f

�2
Þ � u � cosfþ a � T�L

T�d
�A3 � p

2 � f½1� k1� � sinð2ðfþ yÞÞ þ 2 � k1 � cosy � sinðfþ yÞg � A2 � p � ½k1 � ðb0 � bÞ � sinðfþ yÞ þ ða0 � aÞ � cosðfþ yÞ� � T�L cosa � cosb

h�ð _a�2 þ _b
�2
Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(B.12)

where A1, A2 and A3 are constants determined by the driven shaft configuration and coupling relative-stiffness properties,

A1 ¼
h�2ð1þ a�2Þ

ð1þ a�2 þ k�c Þ
;A2 ¼

h�2ð1þ a�Þ

ð1þ a�2 þ k�c Þ
;A3 ¼

h�2

ð1þ a�2 þ k�c Þ
(B.13,14,15)
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Appendix C

The nonlinear bearing forces are defined as,

Fx1 ¼ knx � signðx1Þ � jx1j
mX ; Fx2 ¼ knx � signðx2Þ � jx2j

mX (C.1,2)

Fy1 ¼ kny � signðy1Þ � jy1j
mY ; Fy2 ¼ kny � signðy2Þ � jy2j

mY (C.3,4)

where the parameters knx, mx, kny and my define the magnitude and form of the bearing nonlinear stiffness in x and y

directions, respectively. These nonlinear bearing forces produce bending moments, MNa and MNb, about the x and y axes,
respectively.

MNa ¼ kny � signðy1Þ � jy1j
my � aþ kny � signðy2Þ � jy2j

mY � L (C.5)

MNb ¼ �knx � signðx1Þ � jx1j
mX � a� knx � signðx2Þ � jx2j

mX � L (C.6)

A torque, MNf, is also created about the z-axis,

MNf ¼ knx � fsignðx1Þ � jx1j
mX � ½d � sinðfþ yÞ � a � a� þ signðx2Þ � jx2j

mX � ½d � sinðfþ yÞ � L � a�g
�kny � fsignðy1Þ � jy1j

my � ½d � cosðfþ yÞ þ a � b� þ signðy2Þ � jy2j
mY � ½d � cosðfþ yÞ þ L � b�g (C.7)

Substituting for x1, x2, y1 and y2 from Eqs. (A.2) into (C.5), (C.6) and (C.7) and converting to dimensionless form, as before,
we obtain the nonlinear dimensionless generalized forces,

M�Na ¼ DxfsignðB1Þ � jB1j
my � a� þ signðB2Þ � jB2j

mY g (C.8)

M�Nb ¼ �Dy � fsignðB3Þ � jB3j
mX � a� þ signðB4Þ � jB4j

mX g (C.9)

M�Nf ¼ Dx � fsignðB3Þ � jB3j
mX � ½p � sinðfþ yÞ � a� � a� þ signðB4Þ � jB4j

mX � ½p � sinðfþ yÞ � a�g
�Dy � fsignðB1Þ � jB1j

my � ½p � cosðfþ yÞ þ a� � b� þ signðB2Þ � jB2j
mY � ½p � cosðfþ yÞ þ b�g (C.10)

where,

B1 ¼ a� � ½a0 � a� þ p � ½sinðfþ yÞ � siny�;B2 ¼ ½a0 � a� þ p � ½sinðfþ yÞ � siny�

B3 ¼ a� � ½b� b0� þ p � ½cosðfþ yÞ � cosy�;B4 ¼ ½b� b0� þ p � ½cosðfþ yÞ � cosy� (C.11)

and

Dx ¼
k�nx � h

�2

ð1þ a�2 þ k�coÞ
¼ k�nx � A3;where k�nx ¼

knx

ky
� Lðmx�1Þ (C.12,13)

Dy ¼
k�ny � h

�2

ð1þ a�2 þ k�coÞ
¼ k�ny � A3;where k�ny ¼

kny

ky
� Lðmy�1Þ (C.14,15)
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